

Boletín mensual Vigilancia Volcánica de Tenerife OCTUBRE 2017

El Instituto Volcanológico de Canarias (INVOLCAN) es una entidad demandada unánimemente por el Senado (2005), Parlamento de Canarias (2006), Asamblea General de la Federación Canaria de Municipios, FECAM (2008), Congreso de los Diputados (2009) y la Asamblea General de la Federación Canaria de Islas, FECAI (2014), que instan a la Administración General del Estado y de la Comunidad Autónoma de Canarias, así como a los Cabildos Insulares, a la apuesta conjunta de todos los recursos humanos y técnicos que las diferentes administraciones públicas Españolas destinan a la gestión científica del riesgo volcánico en España con la finalidad de garantizar una coordinación efectiva y eficiente para contribuir al fortalecimiento de las acciones destinadas a la reducción del riesgo volcánico. Desde finales de 2010 el INVOLCAN es una realidad gracias a la implicación del Cabildo Insular de Tenerife, estando a la espera de la participación del resto de las administraciones públicas.

Introducción

En este boletín se presentan los datos registrados por las redes instrumentales permanentes y las campañas científicas periódicas de observación para la monitorización de la actividad volcánica en Tenerife correspondientes al mes de octubre de 2017. Los boletines mensuales de INVOLCAN serán publicados a principios de cada mes reflejando la actividad del mes anterior. El copyright de los datos y de las elaboraciones mostradas en el presente boletín es propiedad intelectual de INVOLCAN. Solo está permitida exclusivamente la difusión del presente boletín en su totalidad. La autorización a la publicación parcial, también en forma elaborada, debe ser solicitada previamente a INVOLCAN mediante correo electrónico (*involcan@gmail.com*). La fuente de los datos sísmicos anteriores al 21/11/2016, fecha en que ha entrado en plena operatividad la Red Sísmica Canaria gestionada por INVOLCAN, proceden de la página web del Instituto Geográfico Nacional, IGN. Los datos mostrados en el presente boletín podrían estar sujetos a futuras revisiones. Se declina cualquier responsabilidad derivada de un uso inadecuado de la información aquí presentada.

www.involcan.org

Resumen

- En el mes de octubre de 2017, la Red Sísmica Canaria ha registrado 101 terremotos de baja magnitud (M_{max}=3.6) en la isla de Tenerife y sus alrededores.
- Los valores de temperatura de las fumarolas del Teide y de la estación termométrica TFT12, no muestran tendencias significativas.
- La Red GPS Canaria (ITER-GRAFCAN-Universidad de Nagoya) que opera el INVOLCAN no ha registrado desplazamientos horizontales y verticales significativos.
- En el mes de octubre 2017, las campañas científicas periódicas de observación sobre emisión difusa de dióxido de carbono (CO₂) en el cráter del Teide reflejan una tendencia descendente de la misma, registrando valores de 72,04 toneladas diarias (t/d), llegando a alcanzar en febrero de 2017 valores de 175 toneladas diarias; los mayores valores registrados en toda la serie. El resto de los parámetros geoquímicos que se presentan en este informe no muestran variaciones significativas durante el mes de octubre 2017.

Valoración

El incremento observado en la emisión difusa de dióxido de carbono (CO₂), emanaciones no visibles al ojo humano, en el cráter del Teide desde el pasado mes de noviembre de 2016 refleja un proceso de presurización del sistema volcánico-hidrotermal, probablemente vinculado a la inyección de gases de origen magmático en el sistema. La ausencia de deformaciones significativas del terreno hace poco probable la implicación directa de un sistema magmático superficial.

A corto plazo, no se puede excluir que continúe este episodio de presurización del sistema volcánico-hidrotermal. Además, podrían producirse más terremotos de pequeña magnitud y de entidad parecida al ocurrido el 6 de enero 2017. Por otra parte, puede excluirse la ocurrencia de terremotos capaces de generar daños a corto plazo. El registro de un incremento en la emisión difusa de dióxido de carbono (CO₂) en el cráter del Teide ha sido y es de interés científico para el fortalecimiento del sistema de alerta temprana, pero <u>no ha representado ni representa peligro</u> alguno para las personas que acceden diariamente al Pico del Teide.

Recordar que en la actualidad el semáforo volcánico para Tenerife se encuentra en posición **VERDE**. Por lo tanto, y según el Plan Especial de Protección Civil y Atención de Emergencias por Riesgo Volcánico en la Comunidad Autónoma de Canarias (PEVOLCA), **los residentes y visitantes en la isla pueden desarrollar sus actividades con absoluta normalidad**.

1 - Sismología

Durante el mes de octubre de 2017, la Red Sísmica Canaria (Fig. 1.1) ha estado en funcionamiento con una media de 13 estaciones operativas. Todos los hipocentros han sido relocalizados manualmente. La incertidumbre en las localizaciones hipocentrales es generalmente de unos pocos kilómetros, mientras que en las magnitudes es de alrededor de 0.2 unidades.

Los hipocentros de los **101** terremotos registrados por la Red Sísmica Canaria durante el mes de octubre de 2017 han sido localizados en su práctica totalidad debajo de la isla de Tenerife y en el área entre Tenerife y Gran Canaria (Fig. 1.1). La magnitud máxima observada ha sido de **3.6** y está asociada al evento del 10 de octubre 2017 a las 05:38 UTC, localizado en el sur de la isla de Tenerife (Fig. 1.1).

El número de terremotos muestra un incremento en los últimos meses (Fig. 1.2). En octubre 2017, las profundidades (Fig. 1.3) y las magnitudes (Fig. 1.4), no muestran ninguna variación significativa. La energía sísmica liberada (Fig. 1.5, 1.6) muestra un incremento, relacionado con el terremoto del 10 de octubre del 2017.

El cálculo de las variaciones relativas de velocidad sísmica a través de interferometría del ruido sísmico, no ha detectado variaciones mayores de ±0.05% (Fig. 1.7).

Figura 1.1 - Hipocentros de los terremotos localizados por la Red Sísmica Canaria (triángulos rojos) en octubre de 2017 (círculos amarillos). Las cruces muestran los hipocentros localizados en los últimos 12 meses. El polígono negro corresponde al área de Tenerife considerada para las estadísticas sismológicas en los gráficos siguientes. [La fuente de los datos sísmicos anteriores al 21/11/2016 es el Instituto Geográfico Nacional, IGN].

Figura 1.2 - Número de terremotos mensuales en Tenerife. El histograma superior corresponde al periodo enero 2000octubre 2017 para terremotos con $M \ge 1$, mientras que el inferior muestra el periodo noviembre 2016-octubre 2017 para todas las magnitudes. [La fuente de los datos sísmicos anteriores al 21/11/2016 es el Instituto Geográfico Nacional, IGN].

Figura 1.3 - Profundidades de los hipocentros localizados en el área de Tenerife. El gráfico superior corresponde al periodo enero 2000-octubre 2017, mientras que el inferior muestra el periodo noviembre 2016-octubre 2017. [La fuente de los datos sísmicos anteriores al 21/11/2016 es el Instituto Geográfico Nacional, IGN].

Figura 1.4 - Magnitudes de los terremotos localizados en el área de Tenerife. El gráfico superior corresponde al periodo enero 2000-octubre 2017, mientras que el inferior muestra el periodo noviembre 2016-octubre 2017. [La fuente de los datos sísmicos anteriores al 21/11/2016 es el Instituto Geográfico Nacional, IGN].

Figura 1.5 – Energía sísmica liberada por los terremotos localizados en el área de Tenerife. El histograma superior corresponde al periodo enero 2000-octubre 2017, mientras que el inferior muestra el periodo noviembre 2016-octubre 2017. [La fuente de los datos sísmicos anteriores al 21/11/2016 es el Instituto Geográfico Nacional].

Figura 1.6 - Curva de energía sísmica acumulada por los terremotos localizados en el área de Tenerife. El gráfico superior corresponde al periodo enero 2000-octubre 2017, mientras que el inferior muestra el periodo noviembre 2016-octubre 2017. [La fuente de los datos sísmicos anteriores al 21/11/2016 es el Instituto Geográfico Nacional, IGN].

Figura 1.7 - Variaciones de velocidad relativa (% dv/v) medidas por interferometría sísmica (software MSNoise) desde noviembre 2016 hasta octubre 2017.

white

white

Tabla 1.1 - Hipocentros localizados por la Red Sísmica Canaria en octubre de 2017 ymostrados en la Figura 1.1

Fecha	Magnitud	Latitud (°N)	Longitud (°W)	Profundidad (km)
2017-10-01 01:27	1.9	28.1089	-16.1258	0.0
2017-10-02 07:00	1.5	28.3195	-16.6092	1.7
2017-10-03 02:39	2.1	28.0136	-16.2097	0.0
2017-10-03 22:52	1.8	28.1033	-16.3427	5.9
2017-10-04 15:51	2.0	28.2032	-16.1648	7.8
2017-10-04 16:05	1.1	28.3071	-16.7262	11.4
2017-10-04 18:18	1.8	28.3142	-16.7088	8.2
2017-10-04 18:27	1.4	28.3042	-16.7181	9.9
2017-10-04 19:32	N.D.	28.2499	-16.6620	34.3
2017-10-04 22:36	1.2	28.3339	-16.7440	23.7
2017-10-04 22:37	1.1	28.3071	-16.7264	10.4
2017-10-04 22:40	1.1	28.3033	-16.7190	12.3
2017-10-04 22:41	1.2	28.3002	-16.7382	11.2
2017-10-04 23:07	1.1	28.2838	-16.7303	8.4
2017-10-05 05:54	1.6	28.0764	-16.2354	0.1
2017-10-05 07:37	1.5	28.1892	-16.1007	6.7
2017-10-05 10:11	0.9	28.2792	-16.6693	13.1
2017-10-05 10:13	1.0	28.3098	-16.7232	8.6
2017-10-05 10:14	1.1	28.3106	-16.7133	7.0
2017-10-05 18:03	1.0	28.3112	-16.7147	8.4
2017-10-06 09:38	0.9	28.3138	-16.7168	9.0
2017-10-06 12:51	2.5	28.0796	-16.1594	1.8
2017-10-06 18:40	1.0	28.3111	-16.7183	9.1
2017-10-06 19:01	1.7	28.3489	-15.5192	41.4
2017-10-07 05:53	1.6	28.0911	-16.1205	5.8
2017-10-07 06:13	1.6	28.0192	-16.2150	0.0
2017-10-07 06:59	1.5	28.0847	-16.1919	0.0
2017-10-08 01:23	1.1	28.2284	-16.7899	27.2
2017-10-08 04:08	1.0	28.2037	-16.8976	27.4
2017-10-08 04:26	0.8	28.2740	-16.5233	13.2
2017-10-08 22:44	1.4	28.0466	-16.1561	0.0
2017-10-10 05:38	3.6	27.9834	-16.6750	15.5
2017-10-10 05:58	0.9	28.1222	-16.7322	23.1
2017-10-10 20:14	1.0	28.2936	-16.4714	2.3
2017-10-10 20:38	0.8	28.1771	-16.5930	0.0
2017-10-10 23:54	2.4	28.1323	-15.9005	1.7
2017-10-11 12:39	1.7	28.0916	-15.6245	0.0
2017-10-11 12:42	1.6	28.1349	-15.6221	0.0
2017-10-13 04:30	1.6	28.1749	-16.2139	24.9
2017-10-13 20:15	1.3	28.1992	-16.1628	0.0
2017-10-13 20:59	1.4	28.2932	-16.1567	0.0
2017-10-14 13:56	1.5	27.6262	-15.7450	24.5
2017-10-14 21:56	1.3	28.2288	-16.1383	2.5
2017-10-15 11:50	1.6	28.1388	-16.1604	2.6
2017-10-15 13:33	2.2	27.8450	-16.2157	0.0
2017-10-15 20:30	0.8	28.2922	-16.7182	12.2
2017-10-16 22:36	1.2	28.2478	-16.6727	11.5
2017-10-16 23:45	1.2	28.2982	-16.7047	14.2
2017-10-17 15:56	N.D.	28.1621	-16.5942	0.0
2017-10-19 09:16	N.D.	28.2740	-16.6931	0.0

www.involcan.org

white white

2017-10-20 01:40	2.2	28.5858	-15.7706	0.0
2017-10-20 13:42	1.7	28.1947	-16.0947	15.7
2017-10-21 05:29	1.0	28.2196	-16.5440	14.3
2017-10-21 09:39	1.5	28.0488	-16.5900	28.4
2017-10-21 09:53	2.1	28.1228	-16.2581	0.0
2017-10-21 12:21	1.1	28.2074	-16.6132	5.6
2017-10-21 18:41	1.2	28.1877	-16.6422	7.1
2017-10-21 21:39	1.2	28.2453	-16.6502	17.6
2017-10-22 03:32	1.6	28.2895	-16.7775	45.0
2017-10-22 13:29	1.5	28.3175	-16.5131	9.0
2017-10-24 08:00	1.2	28.2756	-16.5187	7.5
2017-10-24 10:30	1.2	28.1735	-16.4256	6.0
2017-10-26 17:17	1.9	28.4359	-16.2184	0.0
2017-10-28 04:49	1.2	28.1261	-16.6263	2.8
2017-10-28 09:46	1.1	28.2471	-16.6690	10.1
2017-10-28 09:52	1.3	28.1182	-16.6515	5.8
2017-10-28 10:38	1.0	28.1086	-16.6891	7.0
2017-10-28 23:06	1.2	28.1123	-16.6568	2.7
2017-10-29 00:03	1.5	28.3489	-16.1504	68.9
2017-10-29 04:49	1.1	28.1418	-16.7401	0.0
2017-10-29 04:49	1.1	28.1039	-16.6483	3.5
2017-10-29 06:04	1.2	28.0607	-16.6554	0.0
2017-10-29 07:47	1.2	28.0664	-16.6528	0.0
2017-10-29 09:00	1.2	28.0788	-16.6676	0.4
2017-10-29 09:52	1.1	28.1141	-16.6571	6.1
2017-10-29 12:36	1.2	28.2311	-16.5388	0.0
2017-10-29 12:55	1.7	28.0686	-16.2844	23.3
2017-10-29 19:26	1.0	28.3259	-16.7754	13.2
2017-10-29 21:53	1.4	28.1107	-16.6880	6.0
2017-10-29 23:34	1.6	28.2354	-16.1389	6.5
2017-10-30 04:45	1.0	28.1542	-16.6651	9.7
2017-10-30 13:11	0.9	28.2432	-16.6473	10.4
2017-10-30 16:10	1.3	28.1223	-16.3992	20.8
2017-10-30 23:31	1.8	27.9937	-16.2144	4.1
2017-10-31 03:24	0.8	28.1645	-16.6554	9.9
2017-10-31 03:34	0.8	28.1590	-16.6549	9.1
2017-10-31 03:38	0.9	28.1689	-16.6536	7.8
2017-10-31 03:42	1.7	28.0396	-16.2034	3.8
2017-10-31 03:49	0.8	28.1411	-16.6723	8.3
2017-10-31 07:35	0.9	28.1690	-16.6497	8.6
2017-10-31 07:37	0.9	28.1687	-16.6373	9.3
2017-10-31 07:38	1.1	28.1149	-16.6643	7.0
2017-10-31 08:00	1.1	28.1394	-16.6603	7.3
2017-10-31 08:01	0.9	28.1650	-16.6521	9.9
2017-10-31 08:07	1.0	28.1270	-16.6580	6.6
2017-10-31 08:20	0.8	28.1883	-16.6922	6.8
2017-10-31 08:28	0.7	28.1598	-16.6619	9.5
2017-10-31 10:50	0.8	28.0875	-16.6550	4.7
2017-10-31 11:04	1.0	28.1671	-16.6458	6.3
2017-10-31 11:05	1.4	28.1241	-16.6537	5.8
2017-10-31 12:27	1.1	28.1149	-16.6775	5.9

www.involcan.org

Tenerif<u>e</u>

-www.hym

2 - Termometría y termografía

En el mes de octubre de 2017, la monitorización termométrica para la vigilancia volcánica de Tenerife se realizó a través de (i) las estaciones que conforman la Red Termométrica Canaria existentes en la isla, (ii) la estación instrumental permanente del Consejo Insular de Aguas de Tenerife existente en el sondeo de Montaña Majúa, (iii) las campañas científicas periódicas de observación sobre el flujo de calor y la temperatura en la fumarola del cráter del Teide (TEF1). En este boletín se pueden observar los valores de la temperatura de las fumarolas del Teide y la temperatura a 40 centímetros de profundidad en la estación termométrica TFT12 (Mirador de la Fortaleza del Teide). Los valores de temperatura registrados en las fumarolas del Teide durante el mes de octubre de 2017 no varían significativamente de los valores medios observados desde 1993 (Fig. 2.1). En la figura 2.1 se muestra la evolución temporal de los valores de temperatura registrados en las fumarolas del Teide entre 1993 y octubre de 2017. Las temperaturas registradas por la estación TFT12, presentan oscilaciones entre valores de 67-72°C (Fig. 2.2).

Figura 2.1 – Variaciones temporales de la temperatura registrada en la fumarola del Teide (TEF1) desde 1993. Los datos de octubre de 2017 se marcan en azul oscuro.

Figura 2.2 – Variaciones temporales de la media móvil semanal relacionada con el registro en modo continuo de la humedad (azul) y la temperatura (rojo) a 40 centímetros de profundidad en estación termométrica TFT12 (Mirador de la Fortaleza del Teide, Tenerife). Los datos de octubre de 2017 se encuentran indicados por el área amarilla.

-while while

3 - Geodesia

En el mes de octubre de 2017, la monitorización geodésica para la vigilancia volcánica de Tenerife se ha realizado a través de la Red GPS Canaria que en Tenerife cuenta con 12 estaciones GPS diferenciales permanentes, de las cuales 2 son de la Universidad de Nagoya, 3 de GRAFCAN y 7 de ITER/INVOLCAN (Fig. 3.1). En este boletín se muestran los datos de la estación GPS del Teide (IZAN) (Fig. 3.2). Ninguna de las estaciones ha registrado desplazamientos significativos, dígase más altos de la incertidumbre experimental.

Figura 3.1 – Red GPS Canaria en la Isla de Tenerife compuesta por 12 estaciones GPS diferenciales permanentes (Universidad de Nagoya, GRAFCAN, ITER/INVOLCAN)

Figura 3.2 – Series temporales de los desplazamientos verticales y horizontales registrados por la estación GPS IZAN (Izaña) desde 2016. El valor medio y la incertidumbre para cada día se indican en rojo y negro, respectivamente.

4 - Geoquímica

En el mes de octubre de 2017, la monitorización geoquímica para la vigilancia volcánica de Tenerife se ha realizado a través de (i) la Red Geoquímica Canaria que en la Isla de Tenerife cuenta con 7 estaciones instrumentales permanentes, (ii) la estación instrumental permanente del Consejo Insular de Aguas de Tenerife existente en el sondeo de Montaña Majúa, (iii) una red de observación y medida semanal del flujo difuso de dióxido de carbono (CO_2) compuesta por 24 trampas alcalinas, (iv) campañas científicas periódicas de observación sobre emisión difusa de dióxido de carbono (CO_2) en el cráter del Teide, y (v) el seguimiento y medida de la composición química e isotópica de las fumarolas en el cráter del Teide (Fig. 4.1).

En este boletín se muestran datos relacionados con (a) el flujo difuso de dióxido de carbono (CO₂) de la estación geoquímica TFG12 (Mirador de la Fortaleza del Teide) (Fig. 4.2), (b) la emisión difusa de dióxido de carbono (CO₂) en el cráter del Teide (Fig. 4.3), (c) el flujo difuso de dióxido de carbono (CO₂) registrado en las estaciones de la Red de Trampas Alcalinas de los sistemas volcánicos Dorsal Noroeste de Tenerife (Fig. 4.4), Dorsal Noreste de Tenerife (Fig. 4.5), Dorsal Norte-Sur de Tenerife (Fig. 4.6) y caldera de Las Cañadas (Fig. 4.7), (d) algunas relaciones geoquímicas de las fumarolas del Teide (Fig. 4.8) y (e) algunos parámetros físico-químicos de las aguas subterráneas que se monitorizan en la estación geoquímica TFG03 (Fig.4.9).

Figura 4.1 – Mapa de localización de las estaciones de la Red Geoquímica Canaria y de la Red de Trampas Alcalinas en la lsla de Tenerife así como de la estación instrumental permanente del sondeo del Consejo Insular de Aguas de Tenerife en Montaña Majua.

Desde noviembre de 2016 se evidencian registros relativamente altos en la tasa de emisión difusa de dióxido de carbono (CO_2) en el cráter del Teide (Fig. 4.3). En la última campaña del 31 de octubre de 2017 se ha observado un valor de **72,04 toneladas diarias (t/d)**. En febrero 2017 esta tasa de emisión alcanzó los 175 toneladas diarias; el mayor valor registrado durante todo el periodo de observación desde que se comenzaron a realizar las campañas científicas periódicas de observación sobre este parámetro geoquímico en el cráter del Teide en 1997.

El registro del flujo difuso de dióxido de carbono (CO₂) en la estación TFG12 refleja un incremento de la media móvil semanal del flujo difuso de dióxido de carbono (CO₂) que alcanzó los 6 kilogramos diarios por metro cuadrado (kg/m²/d) en agosto de 2017 (Fig. 4.2), mientras que el flujo difuso de dióxido de carbono (CO₂) registrado en la Red de Trampas Alcalinas no refleja tendencias claras (Figs. 4.4, 4.5, 4.6 y 4.7). Durante el mes de octubre, no fue posible obtener muestras de las fumarolas del Teide, por lo que no se tienen datos de las relaciones CO₂/CH₄, H₂/CO₂ y He/CO₂ en las fumarolas del Teide para este mes (Fig. 4.8). Los parámetros físico-químicos de las aguas subterráneas medidos por la estación TFG03 no muestran ninguna tendencia significativa excepto una ligera tendencia de incremento en la temperatura del agua (Fig. 4.9).

Figura 4.2 - Monitorización de la media móvil semanal del registro en modo continuo del flujo de CO₂ (azul) y la presión barométrica (rojo) de la estación geoquímica TFG12 (Mirador de la Fortaleza del Teide, Tenerife). Los datos de octubre de 2017 se encuentran indicados por el área amarilla.

R

Tenerif<u>e</u>

Figura 4.3 – Variaciones temporales de la emisión difusa de dióxido de carbono (CO₂) en el cráter del Teide durante los últimos 12 meses Los datos de octubre de 2017 se encuentran marcados en azul oscuro.

whither

mouth

Figura 4.4 – Monitorización semanal del flujo difuso de CO₂ en la Red de Trampas Alcalinas del sistema volcánico Dorsal Noroeste de Tenerife desde noviembre de 2016. Los datos de octubre de 2017 se encuentran marcados en azul oscuro.

Ö

Teneri<u>fe</u>

whitemph

Figura 4.5 – Monitorización semanal del flujo difuso de CO_2 en la Red de Trampas Alcalinas del sistema volcánico Dorsal Noreste de Tenerife desde noviembre de 2016. Los datos de octubre de 2017 se encuentran marcados en azul oscuro.

Ö

Teneri<u>fe</u>

white white

Figura 4.6 – Monitorización semanal del flujo difuso de CO₂ en la Red de Trampas Alcalinas del sistema volcánico Dorsal Norte-Sur de Tenerife desde noviembre de 2016. Los datos de octubre de 2017 se encuentran marcados en azul oscuro.

www.involcan.org

Ö

Teneri<u>fe</u>

Marnahan

while when

Figura 4.7 – Monitorización semanal del flujo difuso de CO₂ en la Red de Trampas Alcalinas de la Caldera de Las Cañadas principalmente desde diciembre de 2016. Los datos de octubre de 2017 se encuentran marcados en azul oscuro.

Ö

Tenerif<u>e</u>

0 - 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Figura 4.8 - Variaciones temporales de las relaciones molares CO₂/CH₄, He/CO₂ y H₂/CO₂ en las fumarolas del Teide (TEF1). No hay datos para octubre de 2017.

Figura 4.9 - Variaciones temporales de temperatura, conductividad (µS·cm⁻¹) y pH medidas en el agua subterránea de la estación geoquímica TFG03, desde noviembre de 2016. Los datos de octubre de 2017 se encuentran indicados en diferentes colores.

man

Este boletín ha sido elaborado gracias al proyecto al proyecto "MONITORIZACIÓN E INVESTIGACIÓN SOBRE LA ACTIVIDAD VOLCÁNICA DE TENERIFE" co-financiado por el Programa Tenerife Innova 2016-2021 que coordina el Área Tenerife 2030: Innovación, Educación, Cultura y Deportes del Cabildo Insular de Tenerife.

Este boletín ha sido redactado por:

- Nemesio M. Pérez Rodríguez, Coordinador Científico del INVOLCAN
- Laura Acosta Armas
- Mar Alonso Cótchico
- Cecilia Amonte López
- María Asensio Ramos
- José Barrancos Martínez
- Fiona Anne Burns
- Iván Cabrera Pérez
- David Calvo Fernández
- Noelia Crespo Arribas
- Luca D'Auria
- Marta García Merino
- Ana Miranda Hardisson
- Rubén García Hernández
- Ernesto García Peirotén
- Pedro A. Hernández Pérez
- Hugo Larnier
- Gladys V. Melián Rodríguez
- Cecilia Morales Ocaña
- German D. Padilla Hernández
- Eleazar Padrón González
- Aarón Pérez Martín
- Monika Przeor
- Fátima Rodríguez García
- Takeshi Sagiya
- Katarzyna Anna Slezak
- Verónica Vela Vela

www.involcan.org